Skip to main content

High Performance Writing

This chapter introduces how to write data into TDengine with high throughput.

How to achieve high performance data writing

To achieve high performance writing, there are a few aspects to consider. In the following sections we will describe these important factors in achieving high performance writing.

Application Program

From the perspective of application program, you need to consider:

  1. The data size of each single write, also known as batch size. Generally speaking, higher batch size generates better writing performance. However, once the batch size is over a specific value, you will not get any additional benefit anymore. When using SQL to write into TDengine, it's better to put as much as possible data in single SQL. The maximum SQL length supported by TDengine is 1,048,576 bytes, i.e. 1 MB.

  2. The number of concurrent connections. Normally more connections can get better result. However, once the number of connections exceeds the processing ability of the server side, the performance may downgrade.

  3. The distribution of data to be written across tables or sub-tables. Writing to single table in one batch is more efficient than writing to multiple tables in one batch.

  4. Data Writing Protocol.

    • Prameter binding mode is more efficient than SQL because it doesn't have the cost of parsing SQL.
    • Writing to known existing tables is more efficient than wirting to uncertain tables in automatic creating mode because the later needs to check whether the table exists or not before actually writing data into it
    • Writing in SQL is more efficient than writing in schemaless mode because schemaless writing creats table automatically and may alter table schema

Application programs need to take care of the above factors and try to take advantage of them. The application progam should write to single table in each write batch. The batch size needs to be tuned to a proper value on a specific system. The number of concurrent connections needs to be tuned to a proper value too to achieve the best writing throughput.

Data Source

Application programs need to read data from data source then write into TDengine. If you meet one or more of below situations, you need to setup message queues between the threads for reading from data source and the threads for writing into TDengine.

  1. There are multiple data sources, the data generation speed of each data source is much slower than the speed of single writing thread. In this case, the purpose of message queues is to consolidate the data from multiple data sources together to increase the batch size of single write.
  2. The speed of data generation from single data source is much higher than the speed of single writing thread. The purpose of message queue in this case is to provide buffer so that data is not lost and multiple writing threads can get data from the buffer.
  3. The data for single table are from multiple data source. In this case the purpose of message queues is to combine the data for single table together to improve the write efficiency.

If the data source is Kafka, then the appication program is a consumer of Kafka, you can benefit from some kafka features to achieve high performance writing:

  1. Put the data for a table in single partition of single topic so that it's easier to put the data for each table together and write in batch
  2. Subscribe multiple topics to accumulate data together.
  3. Add more consumers to gain more concurrency and throughput.
  4. Incrase the size of single fetch to increase the size of write batch.

Tune TDengine

On the server side, database configuration parameter vgroups needs to be set carefully to maximize the system performance. If it's set too low, the system capability can't be utilized fully; if it's set too big, unnecessary resource competition may be produced. A normal recommendation for vgroups parameter is 2 times of the number of CPU cores. However, depending on the actual system resources, it may still need to tuned.

For more configuration parameters, please refer to Database Configuration and Server Configuration

Sample Programs

This section will introduce the sample programs to demonstrate how to write into TDengine with high performance.

Scenario

Below are the scenario for the sample programs of high performance wrting.

  • Application program reads data from data source, the sample program simulates a data source by generating data
  • The speed of single writing thread is much slower than the speed of generating data, so the program starts multiple writing threads while each thread establish a connection to TDengine and each thread has a message queue of fixed size.
  • Application program maps the received data to different writing threads based on table name to make sure all the data for each table is always processed by a specific writing thread.
  • Each writing thread writes the received data into TDengine once the message queue becomes empty or the read data meets a threshold.

Thread Model of High Performance Writing into TDengine

Sample Programs

The sample programs listed in this section are based on the scenario described previously. If your scenarios is different, please try to adjust the code based on the principles described in this chapter.

The sample programs assume the source data is for all the different sub tables in same super table (meters). The super table has been created before the sample program starts to writing data. Sub tables are created automatically according to received data. If there are multiple super tables in your case, please try to adjust the part of creating table automatically.

Program Inventory

ClassDescription
FastWriteExampleMain Program
ReadTaskRead data from simulated data source and put into a queue according to the hash value of table name
WriteTaskRead data from Queue, compose a wirte batch and write into TDengine
MockDataSourceGenerate data for some sub tables of super table meters
SQLWriterWriteTask uses this class to compose SQL, create table automatically, check SQL length and write data
StmtWriterWrite in Parameter binding mode (Not finished yet)
DataBaseMonitorCalculate the writing speed and output on console every 10 seconds

Below is the list of complete code of the classes in above table and more detailed description.

FastWriteExample
The main Program is responsible for:
  1. Create message queues
  2. Start writing threads
  3. Start reading threads
  4. Otuput writing speed every 10 seconds

The main program provides 4 parameters for tuning:

  1. The number of reading threads, default value is 1
  2. The number of writing threads, default alue is 2
  3. The total number of tables in the generated data, default value is 1000. These tables are distributed evenly across all writing threads. If the number of tables is very big, it will cost much time to firstly create these tables.
  4. The batch size of single write, default value is 3,000

The capacity of message queue also impacts performance and can be tuned by modifying program. Normally it's always better to have a larger message queue. A larger message queue means lower possibility of being blocked when enqueueing and higher throughput. But a larger message queue consumes more memory space. The default value used in the sample programs is already big enoug.

package com.taos.example.highvolume;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.sql.*;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;


public class FastWriteExample {
final static Logger logger = LoggerFactory.getLogger(FastWriteExample.class);

final static int taskQueueCapacity = 1000000;
final static List<BlockingQueue<String>> taskQueues = new ArrayList<>();
final static List<ReadTask> readTasks = new ArrayList<>();
final static List<WriteTask> writeTasks = new ArrayList<>();
final static DataBaseMonitor databaseMonitor = new DataBaseMonitor();

public static void stopAll() {
logger.info("shutting down");
readTasks.forEach(task -> task.stop());
writeTasks.forEach(task -> task.stop());
databaseMonitor.close();
}

public static void main(String[] args) throws InterruptedException, SQLException {
int readTaskCount = args.length > 0 ? Integer.parseInt(args[0]) : 1;
int writeTaskCount = args.length > 1 ? Integer.parseInt(args[1]) : 3;
int tableCount = args.length > 2 ? Integer.parseInt(args[2]) : 1000;
int maxBatchSize = args.length > 3 ? Integer.parseInt(args[3]) : 3000;

logger.info("readTaskCount={}, writeTaskCount={} tableCount={} maxBatchSize={}",
readTaskCount, writeTaskCount, tableCount, maxBatchSize);

databaseMonitor.init().prepareDatabase();

// Create task queues, whiting tasks and start writing threads.
for (int i = 0; i < writeTaskCount; ++i) {
BlockingQueue<String> queue = new ArrayBlockingQueue<>(taskQueueCapacity);
taskQueues.add(queue);
WriteTask task = new WriteTask(queue, maxBatchSize);
Thread t = new Thread(task);
t.setName("WriteThread-" + i);
t.start();
}

// create reading tasks and start reading threads
int tableCountPerTask = tableCount / readTaskCount;
for (int i = 0; i < readTaskCount; ++i) {
ReadTask task = new ReadTask(i, taskQueues, tableCountPerTask);
Thread t = new Thread(task);
t.setName("ReadThread-" + i);
t.start();
}

Runtime.getRuntime().addShutdownHook(new Thread(FastWriteExample::stopAll));

long lastCount = 0;
while (true) {
Thread.sleep(10000);
long numberOfTable = databaseMonitor.getTableCount();
long count = databaseMonitor.count();
logger.info("numberOfTable={} count={} speed={}", numberOfTable, count, (count - lastCount) / 10);
lastCount = count;
}
}
}

view source code

ReadTask

ReadTask reads data from data source. Each ReadTask is associated with a simulated data source, each data source generates data for a group of specific tables, and the data of any table is only generated from a single specific data source.

ReadTask puts data in message queue in blocking mode. That means, the putting operation is blocked if the message queue is full.

package com.taos.example.highvolume;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Iterator;
import java.util.List;
import java.util.concurrent.BlockingQueue;

class ReadTask implements Runnable {
private final static Logger logger = LoggerFactory.getLogger(ReadTask.class);
private final int taskId;
private final List<BlockingQueue<String>> taskQueues;
private final int queueCount;
private final int tableCount;
private boolean active = true;

public ReadTask(int readTaskId, List<BlockingQueue<String>> queues, int tableCount) {
this.taskId = readTaskId;
this.taskQueues = queues;
this.queueCount = queues.size();
this.tableCount = tableCount;
}

/**
* Assign data received to different queues.
* Here we use the suffix number in table name.
* You are expected to define your own rule in practice.
*
* @param line record received
* @return which queue to use
*/
public int getQueueId(String line) {
String tbName = line.substring(0, line.indexOf(',')); // For example: tb1_101
String suffixNumber = tbName.split("_")[1];
return Integer.parseInt(suffixNumber) % this.queueCount;
}

@Override
public void run() {
logger.info("started");
Iterator<String> it = new MockDataSource("tb" + this.taskId, tableCount);
try {
while (it.hasNext() && active) {
String line = it.next();
int queueId = getQueueId(line);
taskQueues.get(queueId).put(line);
}
} catch (Exception e) {
logger.error("Read Task Error", e);
}
}

public void stop() {
logger.info("stop");
this.active = false;
}
}

view source code

WriteTask
package com.taos.example.highvolume;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.concurrent.BlockingQueue;

class WriteTask implements Runnable {
private final static Logger logger = LoggerFactory.getLogger(WriteTask.class);
private final int maxBatchSize;

// the queue from which this writing task get raw data.
private final BlockingQueue<String> queue;

// A flag indicate whether to continue.
private boolean active = true;

public WriteTask(BlockingQueue<String> taskQueue, int maxBatchSize) {
this.queue = taskQueue;
this.maxBatchSize = maxBatchSize;
}

@Override
public void run() {
logger.info("started");
String line = null; // data getting from the queue just now.
SQLWriter writer = new SQLWriter(maxBatchSize);
try {
writer.init();
while (active) {
line = queue.poll();
if (line != null) {
// parse raw data and buffer the data.
writer.processLine(line);
} else if (writer.hasBufferedValues()) {
// write data immediately if no more data in the queue
writer.flush();
} else {
// sleep a while to avoid high CPU usage if no more data in the queue and no buffered records, .
Thread.sleep(100);
}
}
if (writer.hasBufferedValues()) {
writer.flush();
}
} catch (Exception e) {
String msg = String.format("line=%s, bufferedCount=%s", line, writer.getBufferedCount());
logger.error(msg, e);
} finally {
writer.close();
}
}

public void stop() {
logger.info("stop");
this.active = false;
}
}

view source code

MockDataSource
package com.taos.example.highvolume;

import java.util.Iterator;

/**
* Generate test data
*/
class MockDataSource implements Iterator {
private String tbNamePrefix;
private int tableCount;
private long maxRowsPerTable = 1000000000L;

// 100 milliseconds between two neighbouring rows.
long startMs = System.currentTimeMillis() - maxRowsPerTable * 100;
private int currentRow = 0;
private int currentTbId = -1;

// mock values
String[] location = {"California.LosAngeles", "California.SanDiego", "California.SanJose", "California.Campbell", "California.SanFrancisco"};
float[] current = {8.8f, 10.7f, 9.9f, 8.9f, 9.4f};
int[] voltage = {119, 116, 111, 113, 118};
float[] phase = {0.32f, 0.34f, 0.33f, 0.329f, 0.141f};

public MockDataSource(String tbNamePrefix, int tableCount) {
this.tbNamePrefix = tbNamePrefix;
this.tableCount = tableCount;
}

@Override
public boolean hasNext() {
currentTbId += 1;
if (currentTbId == tableCount) {
currentTbId = 0;
currentRow += 1;
}
return currentRow < maxRowsPerTable;
}

@Override
public String next() {
long ts = startMs + 100 * currentRow;
int groupId = currentTbId % 5 == 0 ? currentTbId / 5 : currentTbId / 5 + 1;
StringBuilder sb = new StringBuilder(tbNamePrefix + "_" + currentTbId + ","); // tbName
sb.append(ts).append(','); // ts
sb.append(current[currentRow % 5]).append(','); // current
sb.append(voltage[currentRow % 5]).append(','); // voltage
sb.append(phase[currentRow % 5]).append(','); // phase
sb.append(location[currentRow % 5]).append(','); // location
sb.append(groupId); // groupID

return sb.toString();
}
}

view source code

SQLWriter

SQLWriter class encapsulates the logic of composing SQL and writing data. Please be noted that the tables have not been created before writing, but are created automatically when catching the exception of table doesn't exist. For other exceptions caught, the SQL which caused the exception are logged for you to debug.

package com.taos.example.highvolume;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.sql.*;
import java.util.HashMap;
import java.util.Map;

/**
* A helper class encapsulate the logic of writing using SQL.
* <p>
* The main interfaces are two methods:
* <ol>
* <li>{@link SQLWriter#processLine}, which receive raw lines from WriteTask and group them by table names.</li>
* <li>{@link SQLWriter#flush}, which assemble INSERT statement and execute it.</li>
* </ol>
* <p>
* There is a technical skill worth mentioning: we create table as needed when "table does not exist" error occur instead of creating table automatically using syntax "INSET INTO tb USING stb".
* This ensure that checking table existence is a one-time-only operation.
* </p>
*
* </p>
*/
public class SQLWriter {
final static Logger logger = LoggerFactory.getLogger(SQLWriter.class);

private Connection conn;
private Statement stmt;

/**
* current number of buffered records
*/
private int bufferedCount = 0;
/**
* Maximum number of buffered records.
* Flush action will be triggered if bufferedCount reached this value,
*/
private int maxBatchSize;


/**
* Maximum SQL length.
*/
private int maxSQLLength;

/**
* Map from table name to column values. For example:
* "tb001" -> "(1648432611249,2.1,114,0.09) (1648432611250,2.2,135,0.2)"
*/
private Map<String, String> tbValues = new HashMap<>();

/**
* Map from table name to tag values in the same order as creating stable.
* Used for creating table.
*/
private Map<String, String> tbTags = new HashMap<>();

public SQLWriter(int maxBatchSize) {
this.maxBatchSize = maxBatchSize;
}


/**
* Get Database Connection
*
* @return Connection
* @throws SQLException
*/
private static Connection getConnection() throws SQLException {
String jdbcURL = System.getenv("TDENGINE_JDBC_URL");
return DriverManager.getConnection(jdbcURL);
}

/**
* Create Connection and Statement
*
* @throws SQLException
*/
public void init() throws SQLException {
conn = getConnection();
stmt = conn.createStatement();
stmt.execute("use test");
ResultSet rs = stmt.executeQuery("show variables");
while (rs.next()) {
String configName = rs.getString(1);
if ("maxSQLLength".equals(configName)) {
maxSQLLength = Integer.parseInt(rs.getString(2));
logger.info("maxSQLLength={}", maxSQLLength);
}
}
}

/**
* Convert raw data to SQL fragments, group them by table name and cache them in a HashMap.
* Trigger writing when number of buffered records reached maxBachSize.
*
* @param line raw data get from task queue in format: tbName,ts,current,voltage,phase,location,groupId
*/
public void processLine(String line) throws SQLException {
bufferedCount += 1;
int firstComma = line.indexOf(',');
String tbName = line.substring(0, firstComma);
int lastComma = line.lastIndexOf(',');
int secondLastComma = line.lastIndexOf(',', lastComma - 1);
String value = "(" + line.substring(firstComma + 1, secondLastComma) + ") ";
if (tbValues.containsKey(tbName)) {
tbValues.put(tbName, tbValues.get(tbName) + value);
} else {
tbValues.put(tbName, value);
}
if (!tbTags.containsKey(tbName)) {
String location = line.substring(secondLastComma + 1, lastComma);
String groupId = line.substring(lastComma + 1);
String tagValues = "('" + location + "'," + groupId + ')';
tbTags.put(tbName, tagValues);
}
if (bufferedCount == maxBatchSize) {
flush();
}
}


/**
* Assemble INSERT statement using buffered SQL fragments in Map {@link SQLWriter#tbValues} and execute it.
* In case of "Table does not exit" exception, create all tables in the sql and retry the sql.
*/
public void flush() throws SQLException {
StringBuilder sb = new StringBuilder("INSERT INTO ");
for (Map.Entry<String, String> entry : tbValues.entrySet()) {
String tableName = entry.getKey();
String values = entry.getValue();
String q = tableName + " values " + values + " ";
if (sb.length() + q.length() > maxSQLLength) {
executeSQL(sb.toString());
logger.warn("increase maxSQLLength or decrease maxBatchSize to gain better performance");
sb = new StringBuilder("INSERT INTO ");
}
sb.append(q);
}
executeSQL(sb.toString());
tbValues.clear();
bufferedCount = 0;
}

private void executeSQL(String sql) throws SQLException {
try {
stmt.executeUpdate(sql);
} catch (SQLException e) {
// convert to error code defined in taoserror.h
int errorCode = e.getErrorCode() & 0xffff;
if (errorCode == 0x362 || errorCode == 0x218) {
// Table does not exist
createTables();
executeSQL(sql);
} else {
logger.error("Execute SQL: {}", sql);
throw e;
}
} catch (Throwable throwable) {
logger.error("Execute SQL: {}", sql);
throw throwable;
}
}

/**
* Create tables in batch using syntax:
* <p>
* CREATE TABLE [IF NOT EXISTS] tb_name1 USING stb_name TAGS (tag_value1, ...) [IF NOT EXISTS] tb_name2 USING stb_name TAGS (tag_value2, ...) ...;
* </p>
*/
private void createTables() throws SQLException {
StringBuilder sb = new StringBuilder("CREATE TABLE ");
for (String tbName : tbValues.keySet()) {
String tagValues = tbTags.get(tbName);
sb.append("IF NOT EXISTS ").append(tbName).append(" USING meters TAGS ").append(tagValues).append(" ");
}
String sql = sb.toString();
try {
stmt.executeUpdate(sql);
} catch (Throwable throwable) {
logger.error("Execute SQL: {}", sql);
throw throwable;
}
}

public boolean hasBufferedValues() {
return bufferedCount > 0;
}

public int getBufferedCount() {
return bufferedCount;
}

public void close() {
try {
stmt.close();
} catch (SQLException e) {
}
try {
conn.close();
} catch (SQLException e) {
}
}
}

view source code

DataBaseMonitor
package com.taos.example.highvolume;

import java.sql.*;

/**
* Prepare target database.
* Count total records in database periodically so that we can estimate the writing speed.
*/
public class DataBaseMonitor {
private Connection conn;
private Statement stmt;

public DataBaseMonitor init() throws SQLException {
if (conn == null) {
String jdbcURL = System.getenv("TDENGINE_JDBC_URL");
conn = DriverManager.getConnection(jdbcURL);
stmt = conn.createStatement();
}
return this;
}

public void close() {
try {
stmt.close();
} catch (SQLException e) {
}
try {
conn.close();
} catch (SQLException e) {
}
}

public void prepareDatabase() throws SQLException {
stmt.execute("DROP DATABASE IF EXISTS test");
stmt.execute("CREATE DATABASE test");
stmt.execute("CREATE STABLE test.meters (ts TIMESTAMP, current FLOAT, voltage INT, phase FLOAT) TAGS (location BINARY(64), groupId INT)");
}

public Long count() throws SQLException {
if (!stmt.isClosed()) {
ResultSet result = stmt.executeQuery("SELECT count(*) from test.meters");
result.next();
return result.getLong(1);
}
return null;
}

/**
* show test.stables;
*
* name | created_time | columns | tags | tables |
* ============================================================================================
* meters | 2022-07-20 08:39:30.902 | 4 | 2 | 620000 |
*/
public Long getTableCount() throws SQLException {
if (!stmt.isClosed()) {
ResultSet result = stmt.executeQuery("show test.stables");
result.next();
return result.getLong(5);
}
return null;
}
}

view source code

Steps to Launch

Launch Java Sample Program

You need to set environment variable TDENGINE_JDBC_URL before launching the program. If TDengine Server is setup on localhost, then the default value for user name, password and port can be used, like below:

TDENGINE_JDBC_URL="jdbc:TAOS://localhost:6030?user=root&password=taosdata"

Launch in IDE

  1. Clone TDengine repolitory
    git clone git@github.com:taosdata/TDengine.git --depth 1
  2. Use IDE to open docs/examples/java directory
  3. Configure environment variable TDENGINE_JDBC_URL, you can also configure it before launching the IDE, if so you can skip this step.
  4. Run class com.taos.example.highvolume.FastWriteExample

Launch on server

If you want to launch the sample program on a remote server, please follow below steps:

  1. Package the sample programs. Execute below command under directory TDengine/docs/examples/java

    mvn package
  2. Create examples/java directory on the server

    mkdir -p examples/java
  3. Copy dependencies (below commands assume you are working on a local Windows host and try to launch on a remote Linux host)

    • Copy dependent packages
      scp -r .\target\lib <user>@<host>:~/examples/java
    • Copy the jar of sample programs
      scp -r .\target\javaexample-1.0.jar <user>@<host>:~/examples/java
  4. Configure environment variable Edit ~/.bash_profile or ~/.bashrc and add below:

    export TDENGINE_JDBC_URL="jdbc:TAOS://localhost:6030?user=root&password=taosdata"

    If your TDengine server is not deployed on localhost or doesn't use default port, you need to change the above URL to correct value in your environment.

  5. Launch the sample program

    java -classpath lib/*:javaexample-1.0.jar  com.taos.example.highvolume.FastWriteExample <read_thread_count>  <white_thread_count> <total_table_count> <max_batch_size>
  6. The sample program doesn't exit unless you press CTRL + C to terminate it. Below is the output of running on a server of 16 cores, 64GB memory and SSD hard disk.

    root@vm85$ java -classpath lib/*:javaexample-1.0.jar  com.taos.example.highvolume.FastWriteExample 2 12
    18:56:35.896 [main] INFO c.t.e.highvolume.FastWriteExample - readTaskCount=2, writeTaskCount=12 tableCount=1000 maxBatchSize=3000
    18:56:36.011 [WriteThread-0] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.015 [WriteThread-0] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.021 [WriteThread-1] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.022 [WriteThread-1] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.031 [WriteThread-2] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.032 [WriteThread-2] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.041 [WriteThread-3] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.042 [WriteThread-3] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.093 [WriteThread-4] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.094 [WriteThread-4] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.099 [WriteThread-5] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.100 [WriteThread-5] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.100 [WriteThread-6] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.101 [WriteThread-6] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.103 [WriteThread-7] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.104 [WriteThread-7] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.105 [WriteThread-8] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.107 [WriteThread-8] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.108 [WriteThread-9] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.109 [WriteThread-9] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.156 [WriteThread-10] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.157 [WriteThread-11] INFO c.taos.example.highvolume.WriteTask - started
    18:56:36.158 [WriteThread-10] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:36.158 [ReadThread-0] INFO com.taos.example.highvolume.ReadTask - started
    18:56:36.158 [ReadThread-1] INFO com.taos.example.highvolume.ReadTask - started
    18:56:36.158 [WriteThread-11] INFO c.taos.example.highvolume.SQLWriter - maxSQLLength=1048576
    18:56:46.369 [main] INFO c.t.e.highvolume.FastWriteExample - count=18554448 speed=1855444
    18:56:56.946 [main] INFO c.t.e.highvolume.FastWriteExample - count=39059660 speed=2050521
    18:57:07.322 [main] INFO c.t.e.highvolume.FastWriteExample - count=59403604 speed=2034394
    18:57:18.032 [main] INFO c.t.e.highvolume.FastWriteExample - count=80262938 speed=2085933
    18:57:28.432 [main] INFO c.t.e.highvolume.FastWriteExample - count=101139906 speed=2087696
    18:57:38.921 [main] INFO c.t.e.highvolume.FastWriteExample - count=121807202 speed=2066729
    18:57:49.375 [main] INFO c.t.e.highvolume.FastWriteExample - count=142952417 speed=2114521
    18:58:00.689 [main] INFO c.t.e.highvolume.FastWriteExample - count=163650306 speed=2069788
    18:58:11.646 [main] INFO c.t.e.highvolume.FastWriteExample - count=185019808 speed=2136950