Anode Management
Starting the TDgpt Service
The taosanoded
service is created when you install an anode. You can use systemd to manage this service:
systemctl start taosanoded
systemctl stop taosanoded
systemctl status taosanoded
Starting a Time-Series Foundation Model
Time-series foundation models require significant hardware resources. For this reason, they are not started automatically. To start a time-series foundation model manually, use the following procedure:
# Start TDtsdm
start-tdtsfm
# Start Time-MoE
start-timer-moe
# Stop TDtsfm
stop-tdtsfm
# Stop Time-MoE
stop-timer-moe
Directory and Configuration Information
The directory structure of an anode is described in the following table:
Directory or File | Description |
---|---|
/usr/local/taos/taosanode/bin | Directory containing executable files |
/usr/local/taos/taosanode/resource | Directory containing resource files, linked to /var/lib/taos/taosanode/resource/ |
/usr/local/taos/taosanode/lib | Directory containing libraries |
/usr/local/taos/taosanode/model | Directory containing models, linked to /var/lib/taos/taosanode/model |
/var/log/taos/taosanode/ | Log directory |
/etc/taos/taosanode.ini | Configuration file |
Configuration
The anode provides services through an uWSGI driver. The configuration for the anode and for uWSGI are both found in the taosanode.ini
file, located by default in the /etc/taos/
directory.
The configuration options are described as follows:
[uwsgi]
# Anode RESTful service ip:port
http = 127.0.0.1:6090
# base directory for Anode python files, do NOT modified this
chdir = /usr/local/taos/taosanode/lib
# initialize Anode python file
wsgi-file = /usr/local/taos/taosanode/lib/taos/app.py
# pid file
pidfile = /usr/local/taos/taosanode/taosanode.pid
# conflict with systemctl, so do NOT uncomment this
# daemonize = /var/log/taos/taosanode/taosanode.log
# uWSGI log files
logto = /var/log/taos/taosanode/taosanode.log
# uWSGI monitor port
stats = 127.0.0.1:8387
# python virtual environment directory, used by Anode
virtualenv = /usr/local/taos/taosanode/venv/
[taosanode]
# default taosanode log file
app-log = /var/log/taos/taosanode/taosanode.app.log
# model storage directory
model-dir = /usr/local/taos/taosanode/model/
# default log level
log-level = INFO
Note
Do not specify a value for the daemonize
parameter. This parameter causes a conflict between uWSGI and systemctl. If you enable the daemonize
parameter, your anode will fail to start.
The configuration file above includes only the basic configuration needed for an anode to provide services. For more information about configuring uWSGI, see the official documentation.
The main configuration options for an anode are described as follows:
- app-log: Specify the directory in which anode log files are stored.
- model-dir: Specify the directory in which models are stored. Models are generated by algorithms based on existing datasets.
- log-level: Specify the log level for anode logs.
Managing Anodes
You manage anodes through the TDengine CLI. The following actions must be performed within the CLI on a client that is connected to your TDengine cluster.
Create an Anode
CREATE ANODE {node_url}
The node_url
parameter determines the IP address and port of the anode. This information will be registered to your TDengine cluster. Do not register a single anode to multiple TDengine clusters.
View Anodes
You can run the following command to display the FQDN and status of the anodes in your cluster:
SHOW ANODES;
taos> show anodes;
id | url | status | create_time | update_time |
==================================================================================================================
1 | 192.168.0.1:6090 | ready | 2024-11-28 18:44:27.089 | 2024-11-28 18:44:27.089 |
Query OK, 1 row(s) in set (0.037205s)
View Advanced Analytics Services
SHOW ANODES FULL;
taos> show anodes full;
id | type | algo |
============================================================================
1 | anomaly-detection | grubbs |
1 | anomaly-detection | lof |
1 | anomaly-detection | shesd |
1 | anomaly-detection | ksigma |
1 | anomaly-detection | iqr |
1 | anomaly-detection | sample_ad_model |
1 | forecast | arima |
1 | forecast | holtwinters |
1 | forecast | tdtsfm_1 |
1 | forecast | timemoe-fc |
Query OK, 10 row(s) in set (0.028750s)
TDgpt includes six anomaly detection algorithms or models and four forecasting algorithms or models. These are describes as follows:
Type | Name | Description |
---|---|---|
Anomaly detection | grubbs | Statistical model |
Anomaly detection | lof | Density-based model |
Anomaly detection | sheds | Seasonal ESD model |
Anomaly detection | ksigma | Statistical model |
Anomaly detection | iqr | Statistical model |
Forecasting | sample_ad_model | Autoencoder-based sample model |
Forecasting | arima | Autoregressive moving average algorithm |
Forecasting | holtwinters | Exponential smoothing algorithm |
Forecasting | tdtsfm_1 | TDtsfm v1.0 |
Forecasting | tdtsfm_1 | Time-MoE |
These algorithms and models are described in detail in the relevant documentation.
Refresh the Algorithm Cache
UPDATE ANODE {anode_id}
UPDATE ALL ANODES
Delete an Anode
DROP ANODE {anode_id}
Deleting an anode only removes it from your TDengine cluster. To stop an anode, use systemctl on the machine where the anode is located. To remove an anode, run the rmtaosanode
command on the machine where the anode is located.